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Abstract 
In this paper a nonlinear  modification is given to the standard control law resulting  from a linear optimal 

control  problem  formulated  in state-space. This law weights the value of the state feedback matrix with a 
gain  factor whose derivative  is  proportional  to  the difference of a weighted  inner  product of the state vector 
and the logarithm of the gain  factor. The result  is  completely  general  and  therefore  applies to multi-input 
multi-output  systems. An example  illustrates the extent to which the convergence rate is  increased  using 
the nonlinear  feedback law  for  large  values of the state. 

Introduction 

This  paper is concerned  with  modifying the control laws that  are derived from  the infinite  horizon optimal 
control  problem  for  linear  systems.  To  reiterate the well-known result [l, 21, suppose that we have the  standard 
linear  time-invariant  system  with 

k = Ax + Bu 
y = cs, 

where A E Rnln, B E R"?", and C E Rnyp. Suppose, too,  that  the system is both observable and reachable. 
The infinite  horizon optimal  control problem is formulated  as  the minimization of the cost functional J ( u )  
over all possible inputs u where 

J ( u )  = Lw yTy + uTu d t .  

The minimizing  solution may  be  written  as u = -BTPx where P is the unique  positive  definite  stabilizing 
solution to the algebraic  Riccati  equation 

ATP + P A  - PBBTP + CTC = 0. (3) 



Less  well known,  perhaps, is that  this  Riccati  solution provides a family of stabilizing  non-optimal  solutions 
parameterized over a scalar.  In  other words, the feedback u = - f ( l  + S)BTPz is also stabilizing  where S > 0 
[ 5 ] .  The  aim of this  paper is to show that  there  exists  an  adaptive law  for S which produces a stabilizing  solution 
as well. This  adaptive law  enables to controller to  operate  in  two regimes: one  with slower dynamics  for  states 
with  small  magnitudes  and  one  with  faster  dynamics  for  states  with  large  magnitudes.  An  application  for 
such a scheme could be  in  target  acquisition  and  tracking. 

Non-Linear  Controller 

Suppose we augment  the  control law u = -.( 1 + 6)BTPz  where the gain  factor S is allowed to  vary  according 
to  the  equation 

B = -a log( l  + 6) + P zT ( ( 2 4 1  + S) - 1) PBBTP + CTC) z 
log( 1 + 6) + 1 

for some  positive  constants a and P with yc > f .  This  control law is reminiscent of the square-law  adaptive 
control  algorithm of Willems and  Byrnes [7],  with the exception that  there is a relaxation  term whose  derivative 
is proportional to  its  logarithm.  Note  that  the  square-law is applied here to a vector-valued  argument as 
opposed to  a scalar-valued  argument.  The  logarithmic  relaxation  term was  inspired by a result by Ilchman 
and Townley [3] in which a discrete-time version of the Willems-Byrnes  nonlinear  controller had  time-step 
sizes that varied logarithmically. 

Immediately  one  property of the dynamics of these  equations is evident, which is given in  the following 
lemma. 

Lemma 1 Suppose  the  ordinary  differential  equation  in (4) has  the  initial  condition  S(t0) = SO 2 0, then 
S > O V t > t O .  

ProoJ The proof is given by noting  that 8 = -alog(l  + 6) is a first  order differential equation  with 8 = 0 
when S = 0 and  that  the nonhomogeneous term 
P(log(1 + S) + 1)-1 zT((2.(1+ 6)  - 1) PBBTP + CTC)z 2 0 v S 2 0, z E Rn. 0 

It is also worth  noting  that S = 0 is a stable fixed point in the homogeneous  differential  equation 8 = 
-a log(1 + 6). This  may  be shown by observing that  the  equation above may  be  approximated by the  linear 
equation S = -a6 in a small  neighborhood  about 6 = 0, z = 0. 

Next,  let  us define the  function 

V(2,S) = (1 + P)zTPz + (1 + S)log(l + 6). ( 5 )  

Differentiating  this  equation we have 

V ( z , S )  = -(1+ P)zT((2.(1+ S) - 1) PBBTP + C%)z + j(log(1 + 6) + 1) 
= -(I + p)zT((2.(1 + S) - 1) P B B ~ P  + cTc)x - log( 1 + s)(iog( 1 + S) + 1) 

= - P ( ( 2 ~ ( 1 +  6) - 1) P B B ~ P  + cTqz - d o g ( i +  s)(log(i + 6) + I). 
+ pzT((a.(l+ 6) - 1) PBBTP + CTC)z(log(l + 6) + l)-l( log(l+ 6) + 1) (6) 
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We are now prepared to  give the main  result: 

Theorem 2 Let A E R”,”, B E Rn~m, C E RnJ”, with [A,B] reachable and [A,C] observable. Also, let  the 
constants Q > 0, p > 0 and K > i. Then 
i) there  exists a positive  definite  solution P to (3), such  that 

i = ( A  - K . B B ~ P ) x  (7) 

is stable and 
ii) the  ordinary  differential  equation  given by  the  system 

is  asymptotically stable with S ( t )  = 0 and limt+m x ( t )  = 0. 

Proof. Statement i) is a standard  result  from  optimal  control  theory [l, 2, 51. To prove ii), we start by 
letting D = R” x R+ where R+ represents the nonnegative  real  numbers.  Lemma 1 ensures that [ x ,  SI remain 
in D ‘d t > to .  From  (5) V ( x ,  S) > 0 V [ x ,  SI E D. Let M = N((% - 1) PBBTP + CTC) x {0}, where N 
is the null space  operator.  From  (6) V ( x , S )  < 0 ‘d [ x , 6 ]  E D - M and V ( x , S )  = 0 ‘d [x ,S]  E M. Since the 
Lyapunov  function satisfies the conditions  above  and is continuously differentiable over D, and by Lemma 
1 the solution [ x ,  SI remains  in D V t > t o ,  then by  LaSalle’s Theorem [4, 61 x must  converge to  the  largest 
invariant  set  in M. We note, however, that [ x ,  61 E M =+ S = 0, and  therefore  that  the  solution to  (8) on M 
is defined by a linear differential equation  (7). Since (7) is stable  for  any 2 0  E R” by i), the  largest  invariant 
set  in M is [x,S] = [O,O] ,  completing the proof. 0 

Numerical  Example 

A numerical  example is given here to  illustrate  the  dynamics of the nonlinear  controller derived in  the previous 
section.  Suppose the  system  mentioned in (8) takes  scalar values with A = 0.05, B = 1, C = 0.1, a = 7, 
,b’ = 160, K .  = 0.75, x0 = 1, and SO = 0. The positive definite solution to  the Riccati  equation in (3) is 
P = 0.1618. The  results of the simulation  are given in Figures 1 and 2. Those  results  that  are labeled 
“Linear”  are  for  simulations  in which the value of S remains fixed at S = 0. Those  labeled  “Nonlinear” 
allow the value of S to  vary  according to  the  update laws above. Note that for  large values of the  state x ,  
the convergence rate of the nonlinear  system is much faster  as evidenced by the value of S. As the  state 
approaches  zero,  the value of S M 0, and  therefore  the convergence rate is predominantly governed by the 
linear  dynamics of (7). 
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Conclusions 

In  this  paper a modified  nonlinear  control  law is given which  is based  on a linear  control law derived from  an 
algebraic  Riccati  equation. The  impetus for studying  this  system  came  from considering a Kalman filter  with 
slow dynamics in the presence of occasional step-function  disturbances.  In  such a case, the convergence to 
steady-state is too slow to effectively reject the occasional  disturbance, while the  option of speeding  up  the 
dynamics  obviates the  optimality of the filter. 
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Figure 1: Convergence Comparison 

Figure 2: Gain  Factor  Evolution 
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